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Counting Product Rules

Counting

Counting of exact quantities of patterns, classifications, or distinct grouping
fall under Combinatorics or Combinatorial analysis.

Counting Principle

With two experiments M (with m outcomes) and N (with n outcomes),
there are m . n total possible outcomes of the compound experiment MN

Also known as product rule

Can be proved using matrix form and the cartesian product between
sets, however the following illustrations.
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Counting Product Rules

Example

A student is certain he will get A or a B in Data Structures. He is not sure
whether he will get A, B, C, D, or F in Genetic Algorithms 303. How many
different grading possibilities are there.

Ans.
There are m.n = 2.5 = 10 possibilities.
AA, AB, AC, AD, AF, BA, BB, BC, BD, BF
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Counting Product Rules

Example

How many unique license plates can be constructed where the first three
characters are letters of the alphabet and the last three characters are dec-
imal digits?

Ans.
There are 26.26.26.10.10.10 = 17,576,000 license plates.
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Counting Product Rules

Example

How many unique license plates can be constructed using the coding scheme
of Example 2 when no repetition is allowed among the letters or the digits.

Ans.
There are 26.25.24.10.9.8 = 11,232,000 license plates.
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Counting Permutation

Permutation

Permutation

A permutation is an ordered arrangement of a set of different items.

Ex.
Consider arranging the three letters A, B, C
We enumerate the result as ABC, ACB, BAC, BCA, CAB, CBA.

number of permutations of n objects = n.(n − 1).(n − 2)...3.2.1 = n!
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Counting Permutation

Example

How many batting orders are there on a nine person baseball team.

Ans.
There are 9! = 9.8.7...3.2.1=362,880
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Counting Permutation

Example

Suppose you have 4 papers on genetic algorithms, 6 papers on neural net-
works, and 7 on fuzzy logic. How many arrangement are there if each
classification is always grouped together.

Ans.
There are 4!.6!.7!.3! possible arrangements.
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Counting Permutation

Partial Ordering

Sometimes we are interested in the total numbering of unique ordering of r
objects chosen from a set of n objects.

P(n, r) = n.(n − 1).(n − 2) . . . (n − r + 1)
P(n, r) = n!

(n−r)!
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Counting Permutation

r-Permutation

How many nine person batting orders are possible on a 15 person baseball
team, assuming every player can play every position?

Ans.
There are P(15,9) = 15!

(15−9)! = 1,816,214,400
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Counting Combination

Combination

Suppose we are selecting two letters from the following set where the order
within a selection matter {A,B,C}
Ans.

AB, AC, BA, BC, CA, CB
P(3,2) = 3!

(3−2)! = 6

Combination Sometimes we are interested in the number of unique group-
ing of objects irrespective of their ordering.

AB = BA, AC=CA, and BC=CB

Thus, we divide by the count of different ordering of 2 objects and we get
3!

2!.(3−2)! = 3

C(n, r) = P(n,r)
r ! = n!

r !(n−r)!
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Counting Combination

Examples

The U.S. senate contains 100 senators. How many five-member
subcommittees may be formed?

C(100,5) = 75,287,520

In five-card draw poker, each player is dealt five cards face down.
How many unique deals are there

C(52,5) = 2,598,960
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Probability Theory Basics

Events and Spaces

Space (S)

It is the set of all possible outcomes for an experiment.

Ex.

Flip a single coin S= {Heads, Tails}
Roll of a single coin S={1,2,3,4,5,6}
Flip of two coins S={HH,HT,TH,TT}

Event (E)

It is a subset of a possible outcomes for an experiment.

At least one head in two tosses E= {HH, HT, TH}
Roll of a die with a value greater than three E={4,5,6}
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Probability Theory Basics

Events Operations

Union and Intersection:

E ∪ F
E ∩ F
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Probability Theory Basics

Events Operations

E ∩ F = φ

complement of an event Ec
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Probability Theory Basics

Axioms of Probability

Three main axioms in the probability theory from which all other results
may be derived.

Axiom 1

The probability of an event E must be between 0 and 1.

0 ≤ P(E) ≤ 1

Axiom 2

The probability of the space S must equal 1.

P(S) = 1
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Probability Theory Basics

Axioms of Probability

Axiom 3

For any sequence of mutually exclusive events Ei i = 1,2, . . . , k such that
Ei ∩ Ej = φ for i ≠ j

P(∪i=ki=1) = ∑
i=k
i=1 P(Ei)

The probability of the union of these events is the sum of their
probabilities.
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Probability Theory Basics

Consequences

Probability of the complementary event

P(E c) = 1 − P(E)

Probability of the union of two events

P(E ∪ F ) = P(E) + P(F ) − P(E ∩ F )
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Probability Theory Basics

Equally Likely Outcomes

If all outcomes in a space S are equally likely, then the calculation of an
Event E’s probability is

P(E) = number of points in event E
number of points in space S

EX.

The flip of an unbiased coin

spin of a well-balanced roulette wheel

roll of unweighted die.
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Probability Theory Basics

Examples

What is the probability rolling a 1 or a 2 on a fair die?

P(E) = 2
6
= 1

3

What is the probability rolling an 8 on a pair of dice?

P(E) = 5
36

What is the probability that a head appear at least once in 10 tosses
of a fair coin?

P(E) = 1 − 1
2

10
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Probability Theory Basics

Examples

What is the probability of being dealt a royal flush {A,J,Q,K,10} in
five-card draw poker?

P(E) = 4/C(52,5)

What is the probability of being dealt a straight ln five-card draw
poker? A straight consists of five cards in order where all live cards
are not of the same suit. (e.g., A 2 3 4 5 as long as all are from
different suits)

10.(45 − 4)/C(52,5)
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Probability Theory More on Probability

Conditional Probability

In many real life cases, one event depend on another.

Probability to get an A depend on your semester work

Conditional probability; symbolically we write P(E ∣F ). The
probability of event E given event F has occurred.

The intersection rule can be defined as

P(E ∩ F ) = P(F ).P(E ∣F ) = P(E).P(F ∣E)
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Probability Theory More on Probability

Example

Joyce has a choice between two courses, one in genetic algorithms and one
in fluid mechanics. If she has a 50 percent chance of receiving an ’A’ In the
genetic algorithms course and a 75 percent chance of getting an ’A’ in the
fluid mechanics course, what are her chance of getting an ’A’ and takes the
genetic algorithms course if she decide between the two courses on the toss
of a fair coin?

Ans.
Let A be the event where Joyce receives an A, and let G be the event where
she take the GA course.
P(A ∩G) = P(G)P(A∣G) = 0.5 × 0.5 = 0.25
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Probability Theory More on Probability

Partitions of an Event

It should be noted that the event E can be partitioned as E ∩ F c and
E ∩ F

Thus, P(E) = P(E ∩ F c) + P(E ∩ F )

Using the conditional probability

P(E) = P(F )P(E ∣F ) + P(F c)P(E ∣F c)
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Probability Theory More on Probability

Example

In the previous Example, suppose that Joyce can take fluid mechanic ( event
F) or genetic algorithm ( event G) but not both, and again suppose that
she makes her decision with the unbiased coin to . Calculate the probability
of her making an A ( event A).

Ans. Partition the A event on the mutually exclusive events G and F:
P(A) = P(A∣G)P(G) + P(A∣F )P(F ),= 0.5(0.5) + 0.75(0.5) = 0.625
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Probability Theory More on Probability

Bayes’ Rule

It describes the probability of an event, based on prior knowledge of condi-
tions that might be related to the event.

P(E ∣F ) = P(E∩F)
P(F) =

P(F ∣E)P(E)
P(F) =

P(F ∣E)P(E)
P(F ∣E)P(E)+P(F ∣E c)P(E c)
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Probability Theory More on Probability

Independent Events

Two events E and Fare said to be independent when the conditional prob-
ability P(E ∣F ) is equal to P(E) alone. Thus, for independent events.

P(E ∩ F ) = P(E)P(F )

What is the probability of rolling a deuce on a pair of dice?

P(toss1 = 1 ∩ toss2 = 1) = P(toss1 = 1).P(toss2 = 1) = 1/36

What is the probability n heads in n fair coin tosses?

1
2

n
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Probability Theory More on Probability

Binomial Distribution

If we perform a sequence of trials where each trial has a constant
probability of success, P(success) = p.

Then, The single experiment is called a Bernoulli trial and clearly the
two possible outcomes, success and failure.

The probability of exactly k successes in n Bernoulli trials can be
calculated (assuming independence of the trials) as follows

P(k success in n trials) = C(n, k)pk(1 − p)n−k

This computation is true because a particular sequence of k successes
requires exactly k successes and n − k failures.

This probability distribution is called a binomial probability
distribution
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Probability Theory More on Probability

Expected Value of Random Variable

Assume we want to calculate
the usual outcome of some trial
or trials of a random process.

This is known as the expected
value of a random variable.

The expected value of a discrete
random variable x is defined as
E(x) = ∑i=n

i=1 x .P(x)

We may also be interested in
the expected value of some
function of a random variable.
E(g(x)) = ∑i=n

i=1 g(x).P(x)

Random Variable
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Probability Theory More on Probability

Example

A gambler pays $4.00 to roll a single die where he receives the face value
in return ($1.00 for an ace, $2.00 for a deuce, etc.). What are his expected
net winnings ( losses )?

Ans.
E(gross return) = 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 = $3.5
Net expected return is = -$4.00 + $3.50 = -$0.50.
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E(gross return) = 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 = $3.5
Net expected return is = -$4.00 + $3.50 = -$0.50.
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Limit Theorem

Theorem (Strong law of large numbers)

Assume a sequence of independent, identically distributed random
variables xn i = 1, 2, ... , n with finite expected value. With probability 1:

x1+x2+⋅⋅⋅+xn
n → E(x) as n →∞
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